ANNA UNIVERSITY, CHENNAI

AFFILIATED INSTITUTIONS

R - 2009

CURRICULUM I SEMESTER (FULL TIME)

M.E. SOFTWARE ENGINEERING

SEMESTER I

SL.	COURSE						
NO	CODE	COURSE TITLE	L	Т	Ρ	С	
THEORY							
1	MA9219	Operations Research	3	1	0	4	
2	CS9213	Computer Networks and Management	3	0	0	3	
3	SE9213	Object Oriented Software Engineering	3	0	0	3	
4	SE9214	Software Architecture	3	0	0	3	
5	SE9215	Formal Methods in Software Engineering	3	0	0	3	
PRACTICAL							
6	CS9216	Networking Lab	0	0	3	2	
7	SE9217	Case Tools Lab	0	0	3	2	
		TOTAL	15	1	6	20	

UNIT IQUEUEING MODELS12Poisson Process – Markovian Queues – Single and Multi-server Models – Little's formula – Machine Interference Model – Steady State analysis – Self Service Queue.12
UNIT IIADVANCED QUEUEING MODELS12Non- Markovian Queues – Pollaczek Khintchine Formula – Queues in Series – Open Queueing Networks –Closed Queueing networks.12
UNIT IIISIMULATION12Discrete Even Simulation – Monte – Carlo Simulation – Stochastic Simulation – Applications to Queueing systems.12
UNIT IVLINEAR PROGRAMMING12Formulation – Graphical solution – Simplex method – Two phase method - Transportation and Assignment Problems.12
UNIT VNON-LINEAR PROGRAMMING12Lagrange multipliers – Equality constraints – Inequality constraints – Kuhn – Tucker conditions – Quadratic Programming.12
TOTAL: 60 PERIODS

1. Winston.W.L. "Operations Research", Fourth Edition, Thomson – Brooks/Cole, 2003. 2. Taha, H.A. "Operations Research: An Introduction", Ninth Edition, Pearson Education Edition, Asia, New Delhi, 2002.

REFERENCES:

- 1. Robertazzi. T.G. "Computer Networks and Systems Queuing Theory and Performance Evaluation", Third Edition, Springer, 2002 Reprint.
- 2. Ross. S.M., "Probability Models for Computer Science", Academic Press, 2002.

CS9213 COMPUTER NETWORKS AND MANAGEMENT LT P C 3003

9

UNIT I HIGH SPEED NETWORKS

Frame Relay Networks - Asynchronous transfer mode - ATM Protocol Architecture, ATM logical Connection, ATM Cell – ATM Service Categories – AAL. High Speed LAN's: Fast Ethernet, Gigabit Ethernet, Fibre Channel – Wireless LAN's.

MA9219

OPERATIONS RESEARCH

LT P C 3104

UNIT II CONGESTION AND TRAFFIC MANAGEMENT

Queuing Analysis- Queuing Models – Single Server Queues – Effects of Congestion – Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks – Frame Relay Congestion Control.

UNIT III TCP AND ATM CONGESTION CONTROL

TCP Flow control – TCP Congestion Control – Retransmission – Timer Management – Exponential RTO backoff – KARN's Algorithm – Window management – Performance of TCP over ATM. Traffic and Congestion control in ATM – Requirements – Attributes – Traffic Management Frame work, Traffic Control – ABR traffic Management – ABR rate control, RM cell formats, ABR Capacity allocations – GFR traffic management.

UNIT IV INTEGRATED AND DIFFERENTIATED SERVICES

Integrated Services Architecture – Approach, Components, Services- Queuing Discipline, FQ, PS, BRFQ, GPS, WFQ – Random Early Detection, Differentiated Services.

UNIT V PROTOCOLS FOR QoS SUPPORT

RSVP – Goals & Characteristics, Data Flow, RSVP operations, Protocol Mechanisms – Multiprotocol Label Switching – Operations, Label Stacking, Protocol details – RTP – Protocol Architecture, Data Transfer Protocol, RTCP.

TOTAL: 45 PERIODS

TEXT BOOKS:

1. William Stallings, "HIGH SPEED NETWORKS AND INTERNET", Pearson Education, Second Edition, 2002.

REFERENCES:

- 1. Warland & Pravin Varaiya, "HIGH PERFORMANCE COMMUNICATION NETWORKS", Jean Harcourt Asia Pvt. Ltd., II Edition, 2001.
- 2. Irvan Pepelnjk, Jim Guichard and Jeff Apcar, "MPLS and VPN architecture", Cisco Press, Volume 1 and 2, 2003.

SE9213 OBJECT ORIENTED SOFTWARE ENGINEERING LT P C

3003

9

9

9

UNIT I INTRODUCTION

System Concepts – Software Engineering Concepts – Development Activities – Managing Software Development – Unified Modeling Language – Project Organization – Communication

UNIT II ANALYSIS

Requirements Elicitation – Concepts – Activities – Management – Analysis Object Model – Analysis Dynamic Models

UNIT III SYSTEM DESIGN

Decomposing the system – Overview of System Design – System Design Concepts – System Design Activities – Addressing Design Goals – Managing System Design

9

10

9

8

UNIT IV **OBJECT DESIGN AND IMPLEMENTATION ISSUES**

Reusing Pattern Solutions – Specifying Interfaces – Mapping Models to Code – Testing

UNIT V MANAGING CHANGE

REFERENCES:

Rationale Management - Configuration Management - Project Management - Software Life Cycle

- 1. Bernd Bruegge, Alan H Dutoit, Object-Oriented Software Engineering, 2nd ed, Pearson Education, 2004.
- 2. Craig Larman, Applying UML and Patterns, 3rd ed, Pearson Education, 2005.
- 3. Stephen Schach, Software Engineering 7th ed, McGraw-Hill, 2007.

UNIT I Introduction – software design levels – software engineering discipline – architecture business cycle - architectural patterns - reference models - architectural structures. views

SOFTWARE ARCHITECTURE

UNIT II

SE9214

Architectural styles – pipes and filters – object-orientation – invocation – layered systems - repositories - interpreters - process control - heterogenous architectures - case studies

UNIT III

Architecture and functionality - architecture qualities - architecture in the lifecycle -Architectural design - Shared information systems – database integration – integration in software development environments - architectural structures for shared information systems

UNIT IV

Architectural design guidance – design space – design rules – applying design space – quantified design space - formal models and specification - formalizing architectural style, design space - z - notation

UNIT V

Linguistic issues – requirements for architectural description languages – first class connectors – adding implicit invocation to traditional programming languages – tools for architectural design - universal connector language - Software architecture Documentation – reconstruction

TOTAL: 45 PERIODS

9

10

TOTAL:45 PERIODS

8

LT P C 3003

9

9

9

9

TEXT BOOKS:

- 1. Mary shaw and David Garlan, Software Architecture Perspectives on an emerging discipline, Pearson education, 2008. (unit 1 to 5)
- Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, Addison-Wesley, 2003. (unit 1, 3, 5)

REFERENCES:

- 1. Christine Hofmeister, Robert Nord, Dilip Soni, Applied Software Architecture: A Practical Guide for Software Designers, Addison-Wesley, 1999
- 2. David M. Dikel, David Kane, James R. Wilson, Software Architecture: Organizational Principles and Patterns, Prentice Hall, 2001
- 3. Jan Bosch, Morven Gentleman, Christine Hofmeister, Juha Kuusela, Software Architecture: System Design, Development and Maintenance, Springer, 2002

SE9215 FORMAL METHODS IN SOFTWARE ENGINEERING LT P C 3 0 0 3

UNIT I INTRODUCTION

Why Formal methods were developed – Problems in Natural Language Specifications, Formal Versus Informal Programming – Advantages of Formal Methods – Requirements of Formal System – Types – Prepositional Logic – Predicate Logic – Relationships and Functions.

UNIT II FORMAL SPECIFICATION STYLE

Model-Oriented – Specifications – Concurrency-Based Specifications –Example Specification Languages.

UNIT III VDM

Introduction to VDM – Basic Types – Quote Types – Compound Types – Optional Types – Functions – Operations – Additional Constructs – Modules.

UNIT IV THE Z NOTATION

The Interchange Language – User-Defined Identifiers – Data Types – Basic Types – Compound Types – Schemas – Additional Constructs.

UNIT V FORMAL SEMANTICS AND TOOLS

Operational Semantics – Denotational Semantics – Axiomatic Semantics Proof Editors – Proof Analyser – Symbolic Simulators – Translators – Test Generation Tools.

TOTAL: 45 PERIODS

TEXT BOOK:

1. Andrew Harry, "Formal Methods: Fact File VDM and Z", John Wiley and Sons, 1996.

10

9

8

10

8

REFERENCE:

1. Jim Woodcock, Jim Davies, "Using Z Specification, Refinement and Proof", Prentice Hall International, 1996.

CS9216

NETWORKING LAB

LT P C 0 0 3 2

- 1. Socket Programming
 - a. TCP Sockets
 - b. UDP Sockets
 - c. Applications using Sockets
- 2. Simulation of Sliding Window Protocol
- 3. Simulation of Routing Protocols
- 4. Development of applications such as DNS/ HTTP/ E mail/ Multi user Chat
- 5. Simulation of Network Management Protocols
- 6. Study of Network Simulator Packages such as opnet, ns2, etc.

TOTAL: 45 PERIODS

SE9217

CASE TOOLS LAB

LT P C 0 0 3 2

- 1. Practicing the different types of case tools such as (Rational Rose & other Open Source) used for all the phases of Software development life cycle.
- 2. Data modeling
- 3. Semantic data modeling
- 4. Source code generators
- 5. Re-engineering

- 6. Experimenting CASE Environments
 - a. Toolkits
 - b. Language-centered
 - c. Integrated
 - d. Fourth generation
 - e. Process-centered
- 7. Implementation of the following using CASE Workbenches:
 - a. Business planning and modeling
 - b. Analysis and design
 - c. User-interface development
 - d. Programming
 - e. Verification and validation
 - f. Maintenance and reverse engineering
 - g. Configuration management
 - h. Project management

TOTAL: 45 PERIODS